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The macroscopic quantum theory of the electromagnetic field in a dielectric medium interacting
with a dense collection of embedded two-level atoms fails to reproduce a result that is obtained
from an application of the classical Lorentz local-field condition. Specifically, macroscopic quantum
electrodynamics predicts that the Lorentz redshift of the resonance frequency of the atoms will be
enhanced by a factor of the refractive index n of the host medium. However, an enhancement factor
of (n2 + 2)/3 is derived using the Bloembergen procedure in which the classical Lorentz local-field
condition is applied to the optical Bloch equations. Both derivations are short and uncomplicated
and are based on well-established physical theories, yet lead to contradictory results. Microscopic
quantum electrodynamics confirms the classical local-field-based results. Then the application of
macroscopic quantum electrodynamic theory to embedded atoms is proved false by a specific example
in which both the correspondence principle and microscopic theory of quantum electrodynamics are
violated.

PACS numbers: 42.50.Nm,42.50.Ct,03.50.De

I. INTRODUCTION

The effect of a dielectric host medium on the spon-
taneous emission rate of a two-level atom remains an
interesting and challenging problem in quantum optics
with an importance that befits a rigorous test of our un-
derstanding of the interaction of light with matter. The
essential characteristic of the problem is its multi-scale
nature with the atom being a creature of microscopic
quantum electrodynamics and the dielectric manifesting
in the realm of classical continuum electrodynamics. In
principle, it is possible to represent both the atom and
dielectric microscopically although, in practice, the spon-
taneous emission rate is calculated using a macroscopic
quantum electrodynamic theory [1, 2, 3, 4, 5, 6] in which
the continuous dielectric medium is incorporated into
a medium-assisted electromagnetic field. While the di-
electric renormalization of the spontaneous emission rate
of an embedded atom generates considerable interest, a
mere handful of papers discuss the effect of a dielectric on
the Lorentz redshift of the resonance frequency of two-
level atoms. Knoester and Mukamel [7] used a Hopfield
[8] polariton model of macroscopic quantum electrody-
namics and found that the Lorentz redshift is enhanced
by a factor of the refractive index n compared to the
vacuum value. Crenshaw and Bowden [9] derived the en-
hancement factor (n2 + 2)/3 using the Bloembergen [10]
procedure in which the classical Lorentz local-field con-
dition is applied to the optical Bloch equations. The two
procedures also produce different values for the renor-
malization of the field (Rabi frequency) that drives the
dynamics of atoms in a dielectric.

In this paper, we derive the generalized optical Bloch
equations for a dense collection of two-level atoms in a
dielectric host material using, first, the Bloembergen pro-
cedure based on the classical Lorentz local-field condition
and, second, Ginzburg macroscopic quantum electrody-

namics. The derivations are simple and direct and based
on well-established physical theories, yet produce con-
tradictory results for (i) the Lorentz redshift of the reso-
nance frequency of two-level atoms densely embedded in
the dielectric and (ii) the renormalization of the field that
drives the dynamics of the embedded atoms. The micro-
scopic quantum electrodynamic procedure described by
Crenshaw and Bowden [11] confirms the Bloembergen-
based results. Then, we must conclude that the macro-
scopic quantum electrodynamic theory applied to dielec-
trically embedded atoms violates both the correspon-
dence principle and microscopic quantum electrodynam-
ics.

II. DIELECTRIC LOCAL-FIELD EFFECTS

In the view of Lorentz, classical continuum electrody-
namics is better expressed in terms of an atomistic model
of discrete particles embedded in the vacuum that in-
teract with the microscopic electromagnetic field at the
point of the particle [12, 13]. The local field that acts on
that particle,

EL = E +
4π

3
P, (2.1)

is comprised of the macroscopic Maxwell field E and the
reaction field of all other particles, expressed in terms of
the macroscopic polarization P. For a linearly polariz-
able material, the polarization P = pNdEL is the prod-
uct of the microscopic polarizability p, the dipole number
density Nd, and the local field. Using the Lorentz local-
field condition (2.1) to eliminate the microscopic local
field produces the Clausius–Mossotti–Lorentz–Lorenz re-
lation

4π

3
pNd =

ε − 1

ε + 2
(2.2)
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between the polarizability and the macroscopic dielectric
constant ε = 1 + 4πP/E.

The local-field principle also applies to nonlinear me-
dia. Bloembergen [10] investigated nonlinear optics in
the presence of a linear host medium and found that a
local-field dielectric enhancement factor of

ℓ =
n2 + 2

3
(2.3)

accompanies each appearance of a macroscopic field in
the nonlinear susceptibility. In our notation, ε = n2

for a dielectric and ℓ refers to the specific quantity in
the preceding equation and not to any other constant
or variable representing a local-field factor. Bowden and
co-workers [14, 15, 16] predicted intrinsic optical bista-
bility in a dense collection of vacuum-embedded two-level
atoms due to an inversion-dependent local-field shift of
the resonance frequency. Later work [9] reported the ef-
fect of embedding the dense two-level systems in a host
dielectric. The dynamics of the two-level systems are
described by the optical Bloch equations [17]. Building
on Bloembergen’s work [10], Bowden and Dowling [18]
showed that the field that drives the atoms is the local
field (2.1). With that substitution, one obtains the gen-
eralized optical Bloch equations [18],

∂R21

∂t
= i(ω − ω0)R21 −

iµ

2~

(

E +
4π

3
P

)

W − γ⊥R21,

(2.4a)

∂W

∂t
= −

iµ

~

[(

E∗ +
4π

3
P∗

)

R21 −

(

E +
4π

3
P

)

R∗
21

]

− γ‖(W − Weq). (2.4b)

Here, fields are represented in the plane-wave limit by
envelope functions such that P = 1

2 (Pe−iωt + c.c.),

E = 1
2 (Ee−iωt + c.c.), and EL = 1

2 (ELe−iωt + c.c.). The
macroscopic spatially averaged atomic variables in a ro-
tating frame of reference are R21 = 〈ρ21e

iωt〉sp, R12 =
〈ρ12e

−iωt〉sp, and W = R22 − R11 = 〈ρ22〉sp − 〈ρ11〉sp,
where 〈 · · · 〉sp corresponds to a spatial average over a vol-
ume of the order of a resonance wavelength cubed and the
ρij are the density matrix elements for a two-level sys-
tem with a lower state |1〉 and an upper state |2〉. Also,
µ is the matrix element of the transition dipole moment,
assumed real, γ⊥ is a phenomenological dipole dephas-
ing rate, γ‖ is a phenomenological population relaxation
rate, and Weq is the population difference at equilibrium.

For a linearly polarizable material, the polarization is
P = pNdEL. For atoms embedded in a linearly polar-
izable material, the polarization is the sum of the linear
and nonlinear components. Substituting the local field
(2.1) into the linear component, we have the polarization
envelope

P = pNd

(

E +
4π

3
P

)

+ 2NµR21

where N is the number density of atoms. Collecting
terms in P and using the Clausius–Mossotti–Lorentz–
Lorenz relation (2.2) yields

P =
ε − 1

4π
E +

ε + 2

3
2NµR21. (2.5)

Substituting the polarization envelope (2.5) into the gen-
eralized Bloch equations (2.4) produces

∂R21

∂t
= i

(

ω − ω0 −
4π

3~
Nµ2ℓW

)

R21−
iµ

2~
ℓEW−γ⊥R21,

(2.6a)

∂W

∂t
= −

i

~
[µℓE∗R21 − µℓER∗

21] − γ‖(W − Weq). (2.6b)

For now, we assume that ℓ is real. Then, the local-field ef-
fect of the dielectric is simply an enhancement of the driv-
ing field E , or Rabi frequency µE/~, and the inversion-
dependent Lorentz redshift by ℓ [9]. The decay rates
remain phenomenological.

The optical Bloch equations [17] are the basic semiclas-
sical equations of motion for an isolated two-level system
in the vacuum. The two-level system interacts with its
environment through the local field. Using the classical
Lorentz local-field condition shows the effects of the envi-
ronment to be: (i) a Bowden–Lorentz redshift of the reso-
nance frequency by (4π/3~)Nµ2W due to nearby atoms,
(ii) a Bloembergen enhancement of the field E by ℓ due
to the linear host, and (iii) a Bloembergen-type enhance-
ment of the Bowden–Lorentz redshift by ℓ due to the lin-
ear host. Further consideration of the generalized Bloch
equations, derived using the classical Lorentz local-field
condition, is suspended until quantum electrodynamic
equations of motion have been derived. At that time
Eq. (2.6) will serve as the basis for quantum–classical
correspondence.

III. MACROSCOPIC QUANTUM

ELECTRODYNAMICS

Quantum electrodynamics can be viewed as the quan-
tized version of Lorentzian electrodynamics in which dis-
crete quantum particles interact with the vacuum field
modes. When applied to dielectrics, the practice has
been to create a macroscopic version of quantum electro-
dynamics along the lines of a quantized version of con-
tinuum electrodynamics. The macroscopic theory can
be derived either by quantizing the classical Maxwell
fields or by applying a continuum approximation to
the microscopic quantum electrodynamic Hamiltonian.
Ginzburg [1] pioneered the procedure of canonical quan-
tization of the field in a dielectric and applied it to
Cherenkov radiation. The macroscopic quantization pro-
cedure was limited to dielectrics with negligible disper-
sion and absorption. Jauch and Watson [2, 19] continued
Ginzburg’s work and extended macroscopic quantization
to dispersive dielectrics [5, 20], while other researchers
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have treated absorption [21, 22] and nonlinear dielectrics
[23, 24]. Knoester and Mukamel [7] and Huttner, Baum-
berg, and Barnett [25] start with the fundamental micro-
scopic Hamiltonian and transform from coordinate space
to wave-number space in the continuum approximation
to derive the macroscopic Hopfield Hamiltonian [26]. Re-
cent work [27, 28, 29, 30, 31] includes macroscopic quan-
tization of fields in magnetodielectric media, including
left-handed negative-index materials.

The spontaneous emission rate of an atom in a di-
electric is readily derived by the macroscopic quantum
electrodynamic theory. In 1976, Nienhuis and Alkemade
[6] used a macroscopic version of Fermi’s golden rule to
derive the dielectrically enhanced spontaneous emission
rate with the macroscopic Ginzburg fields. Huttner, Bar-
nett, and Loudon [32], among others, have combined the
macroscopic Fano–Hopfield [8, 33] theory with Fermi’s
golden rule to derive the dielectric renormalization of the
spontaneous emission rate of an impurity atom, while
other studies begin with macroscopic Green’s functions
[34] or auxiliary fields [35]. For the most part, the col-
lective attention is focused on the dielectric renormal-
ization of the spontaneous emission rate. Knoester and
Mukamel [7] obtained the dielectric effect on both the
Lorentz redshift and the spontaneous decay rate by de-
riving operator equations of motion from the Hopfield
model. In this section, we derive equations of motion us-
ing Weisskopf–Wigner theory applied to the macroscopic
Hamiltonian in terms of the Ginzburg field operators [36].
A term-by-term comparison with the generalized Bloch
equations that were derived in the preceding section un-
der the Lorentz local-field condition exposes an extraor-
dinary degree of disagreement between two known and
accepted treatments of the effect of a dielectric host on
the electrodynamics of two-level atoms.

The principal product of the macroscopic quantization
theory is the medium-assisted field operator

Ē =
i~

n

∑

lλ

√

2πωl

~V

(

āle
ikl·r − H.c.

)

êklλ, (3.1)

where ā†
l and āl are the macroscopic creation and destruc-

tion operators for the field modes and ωl is the frequency
of the field in the mode l. Also, V is the quantization
volume, êklλ is a unit vector in the direction of the po-
larization, and λ denotes the state of polarization. The
spontaneous emission rate of an impurity atom in a di-
electric can then be obtained by applying Fermi’s golden
rule,

Γ =
2π

~
|〈f |Hint|i〉|

2D, (3.2)

to the effective interaction Hamiltonian Hint = −µa · Ē,
where i labels the initial state and f denotes all avail-
able final states. As is typically calculated, the dielectric
renormalization of the vacuum spontaneous emission rate
of an atom is found to be n [4, 5, 6] due to the dielec-
tric renormalization of the electric field operator (3.1) by

1/n, which is squared, and the D = n3 density-of-states
factor.

Local-field effects of a dielectric are suppressed in the
macroscopic quantization procedure and such local-field
effects must be introduced phenomenologically. The
paradigm that emerged from the propagation studies of
Hopf and Scully [37] and Bloembergen’s work [10] in non-
linear optics is that the effect of a dielectric host is to
multiply each occurrence of the dipole moment of a two-
level atom by a local-field enhancement factor [3, 7, 17].
Using the Lorentz virtual cavity model of the local field,
the spontaneous emission rate

Γ = nℓ2 4ω3
b |µb|

2

3c3~
= n

(

n2 + 2

3

)2

Γ0 (3.3)

for atoms in a dielectric scales as n5 for large n. For an
atom in a real cavity, the local-field enhancement factor
is based on the Onsager model, and the modified spon-
taneous emission rate

Γ = n

(

3n2

2n2 + 1

)2

Γ0 (3.4)

scales as n. A study of local-field effects by de Vries
and Lagendijk [38] found that the Lorentz virtual-cavity
model is appropriate if the atom goes into a crystal
substitutionally but that the Onsager real-cavity model
should be used for interstitial impurities.

The macroscopic quantum electrodynamic theory can
be used to derive additional consequences of the dielectric
host for two-level atoms. Taking the field in a coherent
state, the effective Hamiltonian is

Heff =
∑

js

~ωa

2
σj

3 + ~

∑

lλ

ωlā
†
l āl

−
i~

n

∑

js

∑

lλ

(

gj
l σ

j
+āle

ikl·rj − gj
l

∗
ā†

l σ
j
−e−ikl·rj

)

−
iµa

2

∑

j

(

σj
+Ēe−i(ωpt−kp·rj) − Ē∗σj

−ei(ωpt−kp·rj)
)

.

(3.5)

For species a, σj
3 is the inversion operator and σj

± are

the raising and lowering operators for the jth atom, gj
l =

(2πωl/~V )1/2µa(x̂j · êklλ) is the coupling between the
atom at position rj and the radiation field, x̂j is a unit
vector in the direction of the dipole moment at rj , ωa is
the transition frequency, and µa is the matrix element of
the transition dipole moment.

Except for coefficients of 1/n, and macroscopic field-
mode operators, the effective Hamiltonian is the same as
the microscopic Hamiltonian for identical two-level atoms
in the vacuum. Equations of motion can then be de-
rived in the same manner, which is the primary reason for
adopting the macroscopic formalism. The formal integral
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of the Heisenberg equation of motion for the field-mode
operators is used to eliminate these operators from the
remaining Heisenberg equations of motion. One obtains

dσj
−

dt
= −iωaσ

j
−(t) +

µa

2~
σj

3(t)Ē(t)e−i(ωpt−kp·rj)

+
1

n

∑

lλ

gj
l σ

j
3(t)āl(0)e−i(ωlt−kl·rj)

+
1

n2

∑

lλ

gj
l σ

j
3(t)

∫ t

0

dt′e−iωl(t−t′)
∑

i6=j,s

gi
l
∗
σi
−(t′)eikl·(rj−ri)

+
1

n2

∑

lλ

gj
l σ

j
3(t)

∫ t

0

dt′e−iωl(t−t′)gj
l

∗
σj
−(t′) (3.6)

and a similar equation of motion for the inversion op-
erator. The procedure to evaluate these terms for two-
level atoms in the vacuum is generally known and will
be considered in detail in the next section. For now it is
sufficient to note that the only differences from the vac-
uum case are the coefficients of powers of n and the n3

renormalization of the density-of-states in a dielectric in
which the sum over modes is evaluated as

∑

l

{}

→ n3

(

L

2πc

)3 ∫ ∞

0

dωlω
2
l

∫

dΩ
{}

(3.7)

in the mode continuum limit. Transforming to a rotating
frame of reference and performing a local spatial average,
one obtains the Bloch-like equations of motion

∂R21

∂t
= i

(

ωp − ωa −
4π

3~
Nµ2

anW

)

R21 −
iµa

2~
ĒW

− n
Γ0

2
R21, (3.8a)

∂W

∂t
= −

i

~

[

µaĒ
∗R21 − µaĒR∗

21

]

− nΓ0(W + 1), (3.8b)

where W = 〈σ3〉sp and R21 = 〈−iσ−〉sp.
Equations (3.8) are the equations of motion for a two-

level atom in a dielectric host medium that are derived
using macroscopic quantum electrodynamics. The effects
of the host appear as an enhancement of the decay rates
and the Bowden–Lorentz redshift by a factor of the re-
fractive index n, when compared to the vacuum n = 1
case. However, the equations of motion derived using
the classical Lorentz local-field condition, Eqs. (2.6), dis-
play an enhancement of both the Bowden–Lorentz red-
shift and the field by a factor of ℓ.

The fact that local-field effects are suppressed in the
macroscopic theory is well known. The accepted practice
[3, 7, 17] is to phenomenologically associate a local-field

factor of ℓ with each occurrence of the dipole moment µ
based on the propagation studies of Hopf and Scully [37]
and Bloembergen’s work [10] in nonlinear optics. In this
case, Eqs. (3.8), become

∂R21

∂t
= i

(

ωp − ωa −
4π

3~
Nµ2

anℓ2W

)

R21 −
iµa

2~
ℓĒW

− nℓ2 Γ0

2
R21, (3.9a)

∂W

∂t
= −

i

~

[

µaℓĒ∗R21 − µaℓĒR∗
21

]

− nℓ2Γ0(W + 1).

(3.9b)
The ad hoc local-field correction gives the Bloembergen
enhancement of the field that was derived classically in
Eq. (2.6), although the redshift is over-corrected. More
significantly, the Bowden–Lorentz redshift retains the ex-
traneous factor of the refractive index due to the macro-
scopically quantized fields. Then the equations of motion
for two-level atoms in a dielectric host, Eqs. (3.8) and
(3.9), that were derived using the macroscopically quan-
tized fields are inconsistent with the generalized Bloch
equations (2.6) of the preceding section, and the appli-
cation of quantized macroscopic fields to the electrody-
namics of two-level atoms is contraindicated by classical
Lorentz local-field theory.

IV. MICROSCOPIC QUANTUM

ELECTRODYNAMICS

In the preceding two sections, we derived generalized
Bloch equations of motion for two-level atoms in a di-
electric host by two well-known methods and obtained
contradictory results. The most fundamental theoretical
approach is to represent both the atoms and the dielec-
tric microscopically [7, 23, 25, 32, 39, 40, 41, 42, 43, 44]
and derive equations of motion from first principles. We
show that the results of microscopic quantum electro-
dynamics affirm the Lorentz local-field theory with re-
spect to the field renormalization and the Lorentz red-
shift. The macroscopic quantum electrodynamic theory
produces different results for these effects and is therefore
not valid.

A dielectric host containing one or more two-level
atoms is modeled quantum electromagnetically as a mix-
ture of two species of atoms, a and b, embedded in the
vacuum. To emphasize the symmetry of the local-field
interaction, both species of atoms are initially treated as
two-level systems. Species b is later taken in the har-
monic oscillator limit that is associated with a relatively
large detuning from resonance. Then, the total Hamilto-
nian is comprised of the Hamiltonians for the free atoms,
the free-space quantized radiation field, and the inter-
action of the two-level systems with the free-space quan-
tized electromagnetic field. The multipolar and minimal-
coupling Hamiltonians are related by a canonical trans-
formation and either can be used. However, due to
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the canonical transformation, the circumstances of the
rotating-wave approximation (RWA) are different for the
two Hamiltonians [26]. In the typical derivation of the di-
electric susceptibility from the minimal-coupling Hamil-
tonian, the RWA is invoked implicitly by replacing po-
lariton eigenenergies with photon energies [7, 8, 33]. We
take the direct route and use the multipolar Hamilto-
nian in the RWA. Using a plane-wave expansion of the
electromagnetic field

E = i~
∑

lλ

√

2πωl

~V

(

ale
ikl·rj − H.c.

)

êklλ, (4.1)

the multipolar RWA Hamiltonian is [11, 45]

H =
∑

js

~ωa

2
σj

3 +
∑

ns

~ωb

2
ςn
3 +

∑

lλ

~ωla
†
l al

−i~
∑

js

∑

lλ

(

gj
l σ

j
+ale

ikl·rj − gj
l

∗
a†

l σ
j
−e−ikl·rj

)

− i~
∑

ns

∑

lλ

(

hn
l ςn

+ale
ikl·rn − hn

l
∗a†

l ς
n
−e−ikl·rn

)

, (4.2)

where a†
l and al are the creation and destruction opera-

tors for the field modes and ωl is the frequency of the field
in the mode l with kl = ωl/c. For species a, σj

3 is the in-

version operator and σj
± are the raising and lowering op-

erators for the jth atom, gj
l = (2πωl/~V )1/2µa(x̂j · êklλ)

is the coupling between the atom at position rj and the
radiation field, x̂j is a unit vector in the direction of
the dipole moment at rj , ωa is the transition frequency,
and µa is the dipole moment. For species b, ςn

3 , ςn
±, hn

l ,
rn, ωb, and µb, perform the same functions. Also, V is
the quantization volume, êklλ is the polarization vector,
and λ denotes the state of polarization. The polariza-
tion indices on the variables have been suppressed for
clarity. In the two-level approximation, the transitions
s = ∆m ∈ (−1, 0, +1) are treated separately and the op-
erators need not carry a specific value for the magnetic
sublevel [46].

Equations of motion for the material and field-mode
operators are developed in a straightforward manner
from the Hamiltonian using the Heisenberg equation. We
have

dal

dt
= −iωlal +

∑

js

gj
l

∗
σj
−e−ikl·rj +

∑

ns

hn
l
∗ςn

−e−ikl·rn ,

(4.3a)

dσj
−

dt
= −iωaσ

j
− +

∑

lλ

gj
l σ

j
3ale

ikl·rj , (4.3b)

dσj
3

dt
= −2

∑

lλ

(

gj
l σ

j
+ale

ikl·rj + gj
l

∗
a†

l σ
j
−e−ikl·rj

)

,

(4.3c)

dςn
−

dt
= −iωbς

n
− +

∑

lλ

hn
l ςn

3 ale
ikl·rn , (4.3d)

dςn
3

dt
= −2

∑

lλ

(

hn
l ςn

+ale
ikl·rn + hn

l
∗a†

l ς
n
−e−ikl·rn

)

.

(4.3e)
Bloch-like operator equations of motion are obtained by
substituting the formal integral of the field-mode opera-
tor equation (4.3a),

al(t) = al(0)e−iωlt +

∫ t

0

dt′e−iωl(t−t′)

×





∑

js

gj
l

∗
σj
−(t′)e−ikl·rj +

∑

ns

hn
l
∗ςn

−(t′)e−ikl·rn



 ,

(4.4)
into the material operator equations of motion (4.3b),
(4.3c), (4.3d), and (4.3e) [47]. We transform operator
variables to different rotating frames of reference in which
σ̃j
− = σj

−eiωat and ς̆n
− = ςn

−eiωbt are slowly varying quan-
tities. Performing the indicated substitution into Eq.
(4.3b) produces

dσ̃j
−

dt
=

∑

lλ

gj
l σ

j
3(t)e

ikl·rj al(0)e−i(ωl−ωa)t + σj
3(t)

∑

lλ

gj
l

×

∫ t

0

dt′e−i(ωl−ωa)(t−t′)
∑

is

gi
l
∗
σ̃i
−(t′)eikl·(rj−ri)

+e−i(ωb−ωa)t
∑

lλ

gj
l σ

j
3(t)

∫ t

0

dt′e−i(ωl−ωb)(t−t′)

×
∑

ns

hn
l
∗ς̆n

−(t′)eikl·(rj−rn) (4.5)

in normal ordering with rji = rj − ri. Likewise, one
obtains

dς̆n
−

dt
=

∑

lλ

hn
l ςn

3 eikl·rnal(0)e−i(ωl−ωb)t

+ei(ωb−ωa)t
∑

lλ

hn
l ςn

3 (t)

∫ t

0

dt′e−i(ωl−ωa)(t−t′)

×
∑

js

gj
l

∗
σ̃j
−(t′)eikl·(rn−rj)

+
∑

lλ

hn
l ςn

3 (t)

∫ t

0

dt′e−i(ωl−ωb)(t−t′)
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×
∑

ms

hm
l

∗ς̆m
− (t′)eikl·(rn−rm) (4.6)

from Eq. (4.3d). Equations of motion for the inversion
operators are obtained from Eqs. (4.3c) and (4.3e) in a
similar fashion.

The field that drives an atom, Eq. (4.4), consists of
the vacuum field, the self-field, and the reaction field and
we can identify the terms on the right-hand side of Eqs.
(4.5) and (4.6) with fluctuations due to the vacuum field,
spontaneous decay from the self-field, near-dipole–dipole
interactions between same-species atoms associated with
the reaction field, and near-dipole–dipole interactions of
an atom with the atoms of the other species, also asso-
ciated with the reaction field. The usual procedure is to
limit consideration to only the spontaneous decay rate
of a single impurity atom by dropping the fluctuations
and the single-species interactions for both the bath and
impurity atoms. These terms are retained here because
they contain significant information about local-field ef-
fects in dielectrics. For concreteness, we take species b
to be the bath atoms and species a to be the two-level
impurity atoms.

V. NEAR-DIPOLE–DIPOLE INTERACTION

The near-dipole–dipole interaction is the basic mech-
anism of the action of the local field. The Weisskopf–
Wigner-based procedure to evaluate the dipole–dipole
interaction for a dense collection of identical two-level
atoms was developed by Ben-Aryeh, Bowden and En-
glund [14], with corrections by Benedict, Malyshev, Tri-
fonov, and Zaitsev [48], to investigate single-species in-
trinsic optical bistability. The results apply to both
species of two-level atoms, individually, but we work with
species b in order to maintain consistent notation when
we take the harmonic oscillator limit of a two-level atom
and derive the Lorentz local-field correction in a dielec-
tric.

We consider a dense collection of identical two-level
atoms of species b in which the atoms are evenly dis-
tributed in the vacuum with a number density Nb. The
same-species interaction

I1 =
∑

lλ

hn
l ςn

3 (t)

∫ t

0

dt′e−i(ωl−ωb)(t−t′)

×
∑

ms

hm
l

∗ς̆m
− (t′)eikl·(rn−rm) (5.1)

can be extracted from Eq. (4.6).

The self-interaction of the nth atom with its own re-
action field is characterized by the term rm = rn in the
interaction as a consequence of the relation ςn

3 (t)ς̆n
−(t) =

−ς̆n
−(t) between Pauli spin operators for the same atom.

Then

Iself
1 =

∑

lλ

hn
l ςn

3 (t)

∫ t

0

dt′e−i(ωl−ωb)(t−t′)hn
l
∗ς̆n

−(t′).

(5.2)
Applying the typical Weisskopf–Wigner procedure [49,
50, 51] in the mode continuum limit, one obtains

Iself
1 = −

2ω3
b |µb|

2

3~c3
ς̆n
−(t) = −

γb

2
ς̆n
−(t), (5.3)

where

γb =
4ω3

b |µb|
2

3~c3
(5.4)

is the spontaneous decay rate. For an atom of species
b, initially in the excited state, γb is the spontaneous
emission rate Γ0 into the vacuum.

The pairwise interaction of atoms is carried in the re-
maining m 6= n part of the summation. In the Milonni–
Knight [46] model of the interaction of two identical two-
level atoms, the strength of the interaction depends on
the separation distance and the magnetic sublevel tran-
sition. Then [46],

F1(R) = eiR

(

−
i

R
+

i

R3
+

1

R2

)

(5.5)

for ∆m = ±1 transitions and

F2(R) = eiR

(

−
2i

R3
−

2

R2

)

(5.6)

for ∆m = 0 transitions, where

βb =
2ω3

b |µb|
2

3~c3
, (5.7)

R = kbrnm = ωbrnm/c, kb = |kb|, rnm = rn − rm, and
rnm = |rnm|. Performing the summation over the mag-
netic sublevels, the pairwise dipole–dipole interaction can
be written as

Idd
1 = ςn

3 (t)
3

2
βb

∑

m 6=n

Bnmς̆m
− (t − rnm/c), (5.8)

where

Bnm = [(x̂m · x̂n) − (x̂m · n̂nm)(x̂n · n̂nm)] F1(kbrnm)

+ (x̂m · n̂nm)(x̂n · n̂nm)F2(kbrnm) (5.9)

and n̂nm = rnm/rnm is a unit vector in the direction of
rnm = rn − rm [14, 48]. Further, Bnm incorporates a
view factor to account for the arrangement of the dipoles
in the volume.

The atoms are evenly distributed with a number den-
sity Nb. For the nth atom, the single-species dipole–
dipole interaction is obtained in a summation over all
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other atoms of species b. In the region near rn, the inter-
action is evaluated by taking the location of dipoles as
discrete, while the continuum approximation is applied
elsewhere. Then

Idd
1 = ςn

3 (t)
3

2
βb

∑

m:rnm<δ

Bnmς̆m
− (t − rnm/c)

+ ςn
3 (t)

3

2
βbNb

∫

V −Vδ

Bς̆−(t − |r|/c)d3
r, (5.10)

where δ is the radius of a small spherical volume Vδ, larger
than a cubic wavelength, about the point rn. For cu-
bic symmetry, the field generated by the localized atoms
rm 6= rn in the virtual cavity is zero at the center
[12, 14, 48].

The atom n is located at the origin of a cylindrical
volume of thickness L and radius R0. The near-dipole–
dipole interaction is obtained by evaluating the integral

Idd
1 ≈

3

2
βbNbς

n
3 (t)

∫ 2π

0

dφ

∫ L/2

−L/2

dz

∫ ρmax

ρmin

ρdρς̆−

×

{

[

1 −
(ρ

r

)2

cos2 φ

]

F1 +
(ρ

r

)2

cos2 φF2

}

, (5.11)

excluding a volume (4/3)πδ3 about the origin from the
range of integration, resulting in

Idd
1 ≈

−4πi

k3
b

Nbω
3
b |µb|

2

~c3
eikbδςn

3 (t)〈ς̆−(t− |r|/c)〉sp. (5.12)

In the limit δ → 0, the near-dipole–dipole interaction

Idd
1 = −iνbς

n
3 (t)ς̄− (5.13)

remains finite. Here

νb =
4π

3~
Nb|µb|

2 (5.14)

is the strength of the near-dipole–dipole interaction and
ς̄− = 〈ς̆−(t − |r|/c)〉sp represents a spatially averaged
quantity. The details of this calculation can be found
in the articles by Ben-Aryeh, Bowden, and Englund [14]
and by Benedict, Malyshev, Trifonov and Zaitsev [48].

The atoms of species b can be treated as harmonic
oscillators if all excitation frequencies are far from res-
onance with ωb. In this limit the atom essentially re-
mains in the ground state such that ςn

3 → −1. Then
the near dipole–dipole interaction reduces to the Lorentz
local-field correction, shifting the resonance frequency by
4πNb|µb|

2/(3~). The microscopic result is in full agree-
ment with the classical Lorentz local-field correction and
has been experimentally validated [52, 53] by selective
reflection of Rb from a sapphire window.

Finally, all of the results of this section can be applied
to the other species of atom. Repeating for species a
yields

Iself
1 = −

2ω3
a|µa|

2

3~c3
σ̃j
−(t) = −

γa

2
σ̃j
−(t) (5.15)

Idd
1 ≈ −iνaσj

3(t)〈σ̃−(t−|r|/c)〉sp = −iνaσ
j
3(t)σ̄−. (5.16)

In addition,

γa = 2βa =
4ω3

a|µa|
2

3~c3
(5.17)

and

νa =
4π

3~
Na|µa|

2 (5.18)

are defined for later use.

VI. INTERSPECIES INTERACTION

The effect of the interspecies near-dipole–dipole in-
teraction can also be evaluated microscopically using
Weisskopf–Wigner theory. A single rotating frame of ref-
erence is used for both species of atoms by making the
transformation ς̃n

− = ς̆n
−e−i(ωb−ωa)t. Applying the results

of the preceding section, we have

dς̃n
−

dt
= −i(ωb − ωa)ς̃n

− −
µb

~
f−

b + iνbς̄− −
γb

2
ς̃n
−

−
∑

lλ

hn
l

∫ t

0

dt′e−i(ωl−ωa)(t−t′)
∑

js

gj
l

∗
σ̃j
−(t′)eikl·(rn−rj)

(6.1)
in the harmonic oscillator limit ςn

3 (t) → −1, where the
fluctuating field

f−
b =

∑

lλ

(2πωl~/V )1/2(x̂n · ek)eikl·rnal(0)e−i(ωl−ωb)t

is associated with the spontaneous decay rate by the
Kramers–Kronig relations.

The interspecies interaction in Eq. (6.1) describes how
a specific host atom n interacts pairwise with each of the
impurity atoms. The formal integral of the equation of
motion of the host atoms, Eq. (6.1), is

ς̃n
−(t) = −

∫ t

0

dt′e−iα(t−t′) µb

~
f− −

∫ t

0

dt′e−iα(t−t′)

×
∑

lλ

hn
l

∫ t′

0

dt′′e−i(ωl−ωa)(t′−t′′)
∑

is

gi
l

∗
σ̃i
−(t′′)eikl·rni ,

(6.2)
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where α = ωb − ωa − νb − iγb/2. Substituting Eq. (6.2)
into Eq. (4.5), one obtains

dσ̃j
−

dt
=

µa

~
σj

3f
− − iνaσj

3σ̄− −
γa

2
σ̃j
− + I2, (6.3)

where

I2 = −
∑

nslλ

gj
l σ

j
3(t)

∫ t

0

dt′e−i(ωl−ωa)(t′−t)hn
l
∗

×eikl·rjn

∫ t′

0

dt′′e−iα(t′−t′′)
∑

l′λ′

hn
l′

∫ t′′

0

dt′′′

× e−i(ωl′−ωa)(t′′−t′′′)
∑

is′

gi
l′
∗
σ̃i
−(t′′′)eikl′ ·rni . (6.4)

The term containing the fluctuations has been dropped
from consideration because the procedures presented here
apply only to slowly varying quantities and because there
will be no contribution from the random fluctuations af-
ter averaging.

The direct dipole–dipole interactions between impu-
rity atoms was derived in Section V. Equation (6.4) con-
tains two such dipole–dipole interactions between non-
identical atoms that are integrated over the different
subspaces corresponding to (i) bath atoms and (ii) two-

level impurity atoms. Due to the relation σj
3(t)σ

j
−(t) =

−σj
−(t) between Pauli spin operators, the term i = j is

the special case that is associated with the renormaliza-
tion of the spontaneous decay rate. This separates the
interaction I2 = Indd

2 + Iself
2 into Iself

2 for the case i = j
and Indd

2 for the summation over the rest of the impurity
atoms. The two parts of the interaction will be consid-
ered separately.

A. Dielectric Mediated Dipole–Dipole Interaction

The nth atom of the dielectric interacts pairwise with
every impurity atom. The term

Idd
2

A
=

∑

l′λ′

hn
l′

∫ t′′

0

dt′′′e−i(ωl′−ωa)(t′′−t′′′)

×
∑

i6=j,s

gi
l′
∗
σ̃i
−(t′′′)eikl′ ·(rn−ri), (6.5)

extracted from Eq. (6.4), can be evaluated in the same
manner as in Section V, except that the atoms are of dif-
ferent species. The summation represents the effect of all
the impurity atoms on a single atom of the host material.
The sum over the i 6= j impurity atoms is performed (i)
in the near region by the discrete summation over the im-
purity atoms and (ii) elsewhere by treating the impurity

atoms in the continuum limit. For nonidentical atoms,
the pairwise interaction goes as [54, 55]

Idd
2

A
=

3

2

√

βaβb

∑

i:rni<δ

Bniσ̃
i
−(t′′ − rni/c)

+
3

2

√

βaβbNa

∫

V −Vδ

Bσ̃−(t′′ − |r|/c)d3
r. (6.6)

Then, Eq. (6.6) is evaluated as in Sec. V to obtain [14]

Idd
2

A
= −

4πi

3~
Naµ

∗
aµb〈σ̃−(t′′ − |r|/c)〉sp

= −
4πi

3~
Naµ∗

aµbσ̄−. (6.7)

The quantity σ̄− = 〈σ̃−(t′′−|r|/c)〉sp is slowly varying in
time and the temporal integral

Idd
2

B
(t′) =

∫ t′

0

dt′′e−iα(t′−t′′)

(

−4πi

3~

)

Naµ
∗
aµbσ̄− (6.8)

can be performed in the adiabatic-following approxima-
tion. Repeatedly integrating Eq. (6.8) by parts [56], the
series can be truncated at the first term in the expansion
if the time rate of change of σ̄− is much smaller than ασ̄−

yielding

Idd
2

B
(t′) =

(

−1

α

) (

−4πi

3~

)

Naµ∗
aµbσ̄−. (6.9)

The remaining part of the Idd
2 integration is another

interspecies dipole–dipole interaction. In this case, the
summation imparts the effect of all the atoms of the host
dielectric, modified by interspecies interaction with the
impurity atoms, on the jth impurity atom. Combining
terms,

Idd
2 (t′) =

−4πi

3~
Nbµ

∗
bµa

1

α

4πi

3~
Naµ∗

aµbσ
j
3σ̄− (6.10)

becomes

Idd
2 (t′) = −

4πi

3
χbνaσj

3σ̄−, (6.11)

where χb is the linear susceptibility of species b. Adding
the direct near-dipole–dipole interaction from Eq. (6.3),
we obtain

Idd
2 − iνaσ3(t)σ̄−(t) = −i

(

1 +
4π

3
χb

)

νaσ3(t)σ̄−(t)

= −i
n2 + 2

3
νaσ3(t)σ̄−(t). (6.12)

Comparison of Eq. (6.12) with the single species dipole–
dipole interaction, Eq. (5.16), shows that the effect of the



9

dielectric host is to enhance the interaction by a factor
of ℓ = (n2 + 2)/3. Taking the local spatial average, W =
〈σ3〉sp and R21 = 〈−iσ−〉sp, one finds that the Lorentz
redshift

n2 + 2

3

4π

3~
Nµ2 (6.13)

is consistent with the Lorentz local-field calculation, Eq.
(2.6a), while the macroscopic quantum electrodynamic
result, Eq. (3.9a), is not.

B. Dielectric-Enhanced Spontaneous Decay Rate

Most of the elements of the microscopic theory of the
spontaneous decay rate of an atom in a dielectric are
common to the treatment of the dipole-dipole interac-
tion. In order to show this clearly, we consider an equiv-
alent derivation of the dielectric mediated dipole–dipole
interaction. Performing the temporal integrations first,
the interspecies interaction (6.4) can be written as

I2 = −
∑

nslλ

gj
l σ

j
3(t)πδ(ωl − ωa)hn

l
∗eikl·(rj−rn)

×

(

−i

α

)

∑

is′l′λ′

hn
l′πδ(ωl′ − ωa)

∑

is′

gi
l′
∗
σ̃i
−(t′)eikl′ ·(rn−ri).

(6.14)
Applying the Milonni-Knight interaction with a view fac-
tor results in

I2 = −
−i

α

9

4
βaβbσ

j
3

∑

n

{

[(x̂j · n̂nj)(x̂n · n̂nj)]F2(karnj)

+ [(x̂j · x̂n) − (x̂j · n̂nj)(x̂n · n̂nj)] F1(karnj)
}

×
∑

i

{

[(x̂i · n̂ni)(x̂n · n̂ni)]F2(karni)

+ [(x̂i · x̂n) − (x̂i · n̂ni)(x̂n · n̂ni)] F1(karni)
}

σi
−. (6.15)

Converting the sums, excluding i = j, to integrals and
integrating over the subspace of two-level atoms and then
over the subspace of oscillators is equivalent to the deriva-
tion of the dielectric mediated dipole–dipole interaction
that was presented in the preceding subsection.

The renormalization of the spontaneous decay rate of
a dielectric-embedded two-level atom is derived from the
interspecies interaction (6.4) in the same fashion by tak-
ing the target atom to be the same as the source atom.
The summation over the two-level atoms is evaluated
with the use of the delta-function δij , rather than the

integration over the subspace of two-level atoms. Like-
wise, the summation over the magnetic sublevels invokes
δss′ . Then,

Iself
2 =

−i

α

9

4
βaβbσ

j
−

∑

n

{

[(x̂j · n̂nj)(x̂n · n̂nj)]
2F 2

2 (karnj)

+ [(x̂j · x̂n) − (x̂j · n̂nj)(x̂n · n̂nj)]
2
F 2

1 (karnj)
}

. (6.16)

The microscopic treatments of the spontaneous decay
rate in a dielectric [11, 45] are missing elements of Eq.
(6.16) and can neither affirm nor contradict the macro-
scopic theory of quantum electrodynamics. Because the
dielectric renormalization of the spontaneous decay rate
does not have a classical local-field condition-based ana-
log, we do not consider it further.

VII. DIELECTRIC-ENHANCED FIELD

The dielectric has an effect on an applied electromag-
netic field that can also be evaluated microscopically.
Taking the field in a coherent state, the partial Hamilto-
nian is

Hf = −
i~

2

∑

j

(

Ωaσj
+e−i(ωpt−kp·rj) − Ω∗

aσj
−ei(ωpt−kp·rj)

)

−
i~

2

∑

n

(

Ωbς
n
+e−i(ωpt−kp·rn) − Ω∗

aςn
−ei(ωpt−kp·rn)

)

,

(7.1)
where ωp is the nominal frequency of the field and Ωa =
µaE/~ and Ωb = µbE/~ are Rabi frequencies. The total
Hamiltonian is now comprised of the Hamiltonians (7.1)
and (4.2). Developing Heisenberg equations of motion
and eliminating the field-mode operators and the dielec-
tric operators results in the appearance of

I3 =
µa

2~
σj

3(t)E(t) −
∑

nslλ

gj
l σ

j
3(t)

∫ t

0

dt′e−i(ωl−ωp)(t−t′)

× hn
l
∗ei(kl−kp)·rjn

∫ t′

0

dt′′eα(t′−t′′) µa

2~
E(t′′) (7.2)

as an addition to Eq. (6.3). Equation (7.2) contains the
same type of interaction that was evaluated in the previ-
ous section. Performing the adiabatic-following approxi-
mation and the sum over polarizations, bath atoms, and
magnetic sublevels in the mode continuum limit, we ob-
tain

I3 =
n2 + 2

3

µa

2~
Eσj

3. (7.3)

The electromagnetic field is enhanced by the same factor
of ℓ as the reaction field.
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VIII. OPTICAL BLOCH EQUATIONS FOR

EMBEDDED ATOMS

The macroscopic optical Bloch equations can be de-
rived from the quantum electrodynamic equations of mo-
tion in the limit of large numbers. Combining Eqs. (6.3),
(6.11), and (7.2), one obtains

dσ̃j
−

dt
= −iℓνaσ

j
3σ̄− + ℓ

µa

2~
Ee−i(ωp−ωa)tσj

3, (8.1)

neglecting the Gaussian noise source with zero mean and
absorption. The equation of motion for the inversion
operator

dσj
3

dt
= 2

[

iℓνaσ̃
j
+σ̄− −

µa

2~
σ̃j

+ℓEe−i(ωp−ωa)t + H.c.

]

(8.2)

is derived in a similar manner. Optical Bloch equations of
motion are obtained by transforming to a frame rotating
at the frequency of the field and taking a local-spatial
average, as in Sec. III. We compare the optical Bloch
equations

∂R21

∂t
= i

(

ωp − ωa −
4π

3~
Nµ2

aℓW

)

R21 −
iµa

2~
ℓEW,

(8.3a)

∂W

∂t
= −

i

~
[µaℓ∗E∗R21 − µaℓER∗

21] , (8.3b)

that were derived from first principles, to the Lorentz
local-field-based equations (2.6). Based on a favorable
comparison of the local-field enhancement of the Lorentz
redshift and the Rabi frequency with the classically de-
rived result, we can reasonably assert that the micro-
scopic theory, unlike the macroscopic quantum electro-
dynamic theory, satisfies the correspondence principle.

The microscopic theory allows us to consider the more
general case of of a complex local-field enhancement fac-
tor. Separating the real and imaginary parts of ℓ, the
optical Bloch equations can be written as

∂R21

∂t
= i

(

ωp − ωa −
4π

3~
Nµ2

aℓrW

)

R21

−
iµa

2~
ℓEW −

4π

3~
Nµ2

aℓiWR21, (8.4a)

∂W

∂t
= −

i

~
[µaℓ∗E∗R21 − µaℓER∗

21]−4ℓiνa|R21|
2 (8.4b)

with ℓ = ℓr + iℓi. The microscopic theory justifies the
use of a complex refractive index in the classical Lorentz
local-field condition. Then Eqs. (8.4), with phenomeno-
logical damping, can be derived by substituting the po-
larization (2.5) with complex n into the generalized Bloch
equations (2.4). The imaginary part of the Lorentz red-
shift, derived in this manner, was found to be associated

with an intrinsic cooperative decay for two-level atoms
in an absorptive host [9]. This result is confirmed by the
microscopic theory.

The optical Bloch equations (8.4) for dielectric-
embedded two-level atoms are derived from the mi-
croscopic description of quantum electrodynamics using
vacuum-based fields that are known to satisfy the equal-
time commutation relations. Because the field-mode op-
erators have been eliminated, the equal-time commuta-
tion relations cannot be discussed in the context of the
optical Bloch equations (8.4) or Heisenberg equations
(8.1) and (8.2). Instead, the optical Bloch equations, gen-
eralized for a dielectric host, must demonstrate conserva-
tion of probability. The total population is W 2+4|R21|

2.
Direct substitution from Eqs. (8.4) shows that the tem-
poral derivative of this quantity is nil, as required, in the
limit that absorption by the atoms and the host dielectric
can be neglected.

IX. SUMMARY

The interest in the dielectric renormalization of the
spontaneous emission rate of an atom embedded in a di-
electric material has obscured the inconsistencies in the
macroscopic theory of quantum electrodynamics. The
dielectric renormalization of the Lorentz redshift and the
Rabi frequency, but not the spontaneous decay rate, can
be derived using the classical Lorentz local-field con-
dition providing an independent check on the validity
of macroscopic quantum electrodynamics. The optical
Bloch equations for a dense collection of two-level atoms
in a dielectric host medium were derived using the clas-
sical Lorentz local-field condition

EL = E +
4π

3
P

in Sec. II, while in Sec. III, a different set of optical Bloch
equations were derived using the macroscopic quantum
electrodynamic theory. Both derivations are short and
uncomplicated and are based on well-established phys-
ical theories, yet lead to contradictory results for the
Lorentz redshift and the Rabi frequency. If we assume
the validity of the Lorentz local-field condition, then the
macroscopic procedure is proven to be incorrect. Con-
versely, the validity of the macroscopic quantum elec-
trodynamic theory would imply that the Lorentz local-
field condition is incorrect. One deciding factor is that
the Lorentz local-field correction has been validated ex-
perimentally [52, 53], while the experimental record for
the macroscopic quantum theory has been inconclusive.
We applied the more fundamental microscopic theory
of quantum electrodynamics to the same problem and
demonstrated complete agreement with classical theory.
The differences in the Rabi frequencies can be reconciled
with a phenomenological local-field factor applied in the
macroscopic case, providing the virtual-cavity model is
used. However, no such facile reconciliation can be pro-
vided for the Lorentz redshift. We conclude that both
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the correspondence principle and microscopic quantum
electrodynamics are violated by the macroscopic quan-

tum electrodynamic theory.
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